Comparative cost analysis for bank filtration systems and direct surface water use under different boundary conditions

Zusammenfassung

Work package WP 5.2 “Combination of Managed Aquifer Recharge (MAR) and adjusted conventional treatment processes for an Integrated Water Resources Management“ within the European Project TECHNEAU (“Technology enabled universal access to safe water”) investigates bank filtration (BF) + post-treatment as a MAR technique to provide sustainable and safe drinking water supply to developing and newly industrialised countries. One of the tasks within this work package is to assess the costefficiency of BF systems. For this a comparative cost analysis (CCA) between groundwater waterworks using BF as natural pre-treatment step and surface water treatment plants (SWTPs) is performed. The CCA yielded that, under the assumption of equally low surface water quality, BF systems are more cost-efficient than SWTPs. This result is in line with the general water source priority of water suppliers, which prefer resources with the best water quality and security under the constraint of guaranteeing sufficient water availability. Furthermore the sensitivity analysis confirmed that the natural boundary condition ‘pumping rate per production well’ has a major impact on the specific total costs of BF systems. Lower pumping rates lead to increasing capital costs for the additional production wells, which are not fully compensated through pumping cost savings and thus lead to increasing total costs. In addition the result of the monitoring scenario clearly confirmed that for this aspect groundwater waterworks have a structural disadvantage compared to surface waterworks. Subsequently, if monitoring costs are taken into account, a higher critical pumping rate per production well is required to exceed the break-even-point. In a nutshell the CCA shall support water supply managers in the complex process of making rational investment decisions. However, since within this analysis only water abstraction and treatment process costs are considered, the CCA does not cover the total cost structure of a waterworks (e.g. costs of building sites). Thus the application of the CCA is only valid if both (i) neglected costs and (ii) benefits are in the same order of magnitude for all alternatives (exception: most cost-efficient alternative provides excess benefits). In case that the above stated prerequisites are not fulfilled, the CCA is only a first step in the economic assessment and more powerful evaluation methods (e.g. cost-benefit analysis) are needed.

Publikation
Kompetenzzentrum Wasser Berlin gGmbH
Rustler, M.
Rustler, M.
Data scientist

My research interests include reproducible research, data management and programming (R & Python).

Miehe, U.
Miehe, U.
Deputy Director, Head of Department “Process Innovation”